set pressure and prevents air intake almost up to set vacuum. The valve is designed so that in cases in which the set pressure is exceeded the vapours are vented into a discharge pipe (e.g. vent header). When the set vacuum is exceeded atmospheric air is pulled into the system. Due to its design the vacuum valve pallet is one size smaller than the pressure valve pallet. The spring loaded design of the pressure pallet allows achieving higher set pressures.

The device will start to open as soon as the set pressure is reached and only requires 10% overpressure to full lift. Continuous investments into research and development have allowed PROTEGO® to develop a low pressure valve which has the same opening characteristic as a high pressure safety relief valve. This "full lift type" technology allows the valve to be set just 10% below the maximum allowable working pressure or vacuum (MAWP or MAWV) of the tank and still safely vent the required mass flow. The opening characteristic of the pressure and vacuum side is basically the same. However, the inbreathing will start as soon as the differential pressure between the connected inbreathing line and the tank is greater than the set pressure of the vacuum pallet. Due to our highly developed manufacturing technology the tank pressure is maintained up to set pressure with a tightness that is far superior to the conventional standard. This feature is facilitated by valve seats made of high quality stainless steel and with individually lapped valve pallets (1), (3) or with an air cushion seal (2) in conjunction with high quality FEP diaphragm and a rugged valve body. After the excess pressure is discharged or the vacuum is balanced, the valve reseats and provides a tight seal.

The optimized fluid dynamic design of the valve body and valve pallet is a result of many years of research work, which allow a stable operation of the valve pallet and optimized performance resulting in reduction of product losses.

Special Features and Advantages

- "full lift type" technology valve utilizes only 10% overpressure to reach full lift
- high performance seal reducing product loss below EPA's 500ppm rule preventing environmental pollution
- based on 10% technology the set pressure is close to the opening pressure which results in best possible pressure management of the system compared to conventional 40%- or 100%-technology valves
- optimized flow performance, which reduces capital cost to a minimum as smaller sized valves may be used
- separate flange connection for in- and outbreathing line
- can be installed in explosion hazardous areas
- housing designed to 150 psi (PN 10)
- spring loaded pressure side to achieve higher set pressures
- maintenance friendly design

Function and Description

The PROTEGO® in-line valve DV/ZU is a state-of-the-art pressure and vacuum relief valve with separate flange connections for pressure and vacuum breathing. Typically the valve is installed in the in- and out-breathing lines of tanks, vessels and process apparatus to protect against unfavorable high and low pressure. The valve prevents emission losses almost up to the

Settings:

- Pressure: +60 mbar up to +500 mbar
 +24 inch W.C. up to +200 inch W.C.
- Vacuum: -3.5 mbar up to -50 mbar
 -1.4 inch W.C. up to -20 inch W.C.
- Vacuum: -3.5 mbar up to -14 mbar
 -1.4 inch W.C. up to -5.6 inch W.C.
 by set pressure up to +150 mbar / +60 inch W.C.

For lower set pressure refer to type DV/ZU.

Higher set pressure and lower set vacuum upon request.

All rights and alterations reserved acc. ISO 16016 - Active data sheet at www.protego.com
Designs and Specifications

The pressure valve pallet is spring loaded, the vacuum valve pallet weight loaded. Lower set pressures for the pressure side are achieved through weight loaded type DV/ZU.

Two different designs are available:

- In-line pressure and vacuum relief valve, standard design
- In-line pressure and vacuum relief valve with heating jacket

Additional special devices available upon request

Table 1: Dimensions

To select the nominal size (DN), please use the flow capacity charts on the following pages

<table>
<thead>
<tr>
<th>DN</th>
<th>40 / 1 ½"</th>
<th>50 / 2"</th>
<th>80 / 3"</th>
<th>100 / 4"</th>
<th>150 / 6"</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>280 / 11.02</td>
<td>340 / 13.39</td>
<td>390 / 15.35</td>
<td>520 / 20.47</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>210 / 8.27</td>
<td>280 / 11.02</td>
<td>310 / 12.20</td>
<td>390 / 15.35</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>165 / 6.50</td>
<td>200 / 7.87</td>
<td>240 / 9.45</td>
<td>300 / 11.81</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>565 / 22.24</td>
<td>675 / 26.57</td>
<td>805 / 31.69</td>
<td>1070 / 42.13</td>
<td></td>
</tr>
</tbody>
</table>

Larger sizes upon request

Dimensions for pressure and vacuum relief valve with heating jacket upon request

Table 2: Material selection for housing

<table>
<thead>
<tr>
<th>Design</th>
<th>Housing</th>
<th>Heating jacket (DV/ZU-F-H-...)</th>
<th>Valve seat</th>
<th>Gasket</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Steel</td>
<td>Steel</td>
<td>Stainless Steel</td>
<td>PTFE</td>
</tr>
<tr>
<td>B</td>
<td>Stainless Steel</td>
<td>Stainless Steel</td>
<td>Stainless Steel</td>
<td>PTFE</td>
</tr>
</tbody>
</table>

Option: Housing with ECTFE-lining

Special materials upon request

Table 3: Material of pressure valve pallet

<table>
<thead>
<tr>
<th>Design</th>
<th>Pressure range (mbar)</th>
<th>Valve pallet</th>
<th>Sealing</th>
<th>Pressure spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>>=+60 up to +500</td>
<td>Stainless Steel</td>
<td>Metal to Metal</td>
<td>Stainless Steel</td>
</tr>
</tbody>
</table>

Special materials upon request

For lower set pressure use type DV/ZU

Higher set pressure and lower set vacuum upon request

Table 4: Material selection for vacuum valve pallet

<table>
<thead>
<tr>
<th>Design</th>
<th>Pressure range (mbar)</th>
<th>Valve pallet</th>
<th>Sealing</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A*</td>
<td>-3.5 up to -5.0</td>
<td>Aluminium</td>
<td>FEP</td>
<td><14 up to -35</td>
<td><35 up to -50</td>
</tr>
<tr>
<td>B*</td>
<td>-1.4 up to -2.0</td>
<td>Stainless Steel</td>
<td>FEP</td>
<td><5.6 up to -14</td>
<td><14 up to -20</td>
</tr>
</tbody>
</table>

Special materials and lower set vacuum upon request

* by set pressure up to +150 mbar / +60 inch W.C.

Table 5: Flange connection type

EN 1092-1; Form B1

ASME B16.5; 150 lbs RFSF

other types upon request
The flow capacity charts have been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow \(V \) in \((m^3/h)\) and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".

All rights and alterations reserved acc. ISO 16016 - Active data sheet at www.protego.com

KA / 6 / 0318 / GB